lucidmode
Release 0.4.3.13

IFFranciscoME

Feb 13, 2022

CONTENTS

1 Introduction 3
2 Installation 5
3 Models 7
4 Functions 11
5 Visualizations 13
6 Examples 15
7 Roadmap 17
8 Release History 19

Index 23

lucidmode, Release 0.4.3.13

B lucidmode

lucidmode is built using similar elements and structure as the API of scikit-learn and TensorFlow, so in order to
preserve standard references like fit, predict, predict_proba and others.

Next, read some more details about What are the key elements of Explainable Artificial Intelligence, and what tools
does lucidmode provide.

CONTENTS

lucidmode, Release 0.4.3.13

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This is an introduction to lucidmode

lucidmode, Release 0.4.3.13

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

The installation is straight forward, you can use pip and clone or dowload a particular version from github repository.

2.1 Using pip

You can install lucidmode, and automatically all the dependencies, using pip:

pip install lucidmode

2.2 Cloning from Github

For the latest development version, first get the source from Github:

git clone https://github.com/lucidmode/lucidmode.git

Then navigate into the local lucidmode directory and if you run the following line it will install the package and all
its dependencies:

python setup.py install

Either option you choose, for the full use of the 1lucidmode package, you will need to have installed some depencies,
all of them are listed in the requirements. txt file:

-- Generic
pandas>=1.1.4
numpy>=1.20

-- Object Description
rich>=9.5

-- Visualization
jupyter>=1.0
plotly>=4.14

-- Documentation
numpydoc

Those are just the lines with dependencies names and versions, you can check the full file Here

https://github.com/lucidmode
https://github.com/lucidmode/lucidmode/blob/main/requirements.txt

lucidmode, Release 0.4.3.13

6 Chapter 2. Installation

CHAPTER
THREE

MODELS

3.1 Multi-Layer Perceptron

class lucidmode.models.NeuralNet (hidden_l, hidden_a, output_n, output_a, cost=None, hidden_r=None,
output_r=None, optimizer=None)
Artificial Neural Network: Feedforward multilayer pereceptron.

It supports a wide variations of topologies, from number of hidden layers, number of hidden neurons per layer,
one input layer and one output layer where both of them could have from 1 to N number of neurons.

Parameters
hidden_l: list (of int) Number of neurons to include per hidden layer.
hidden_a: list (list of str, with length hidden_l) Activation of hidden layers
output_n: int Number of neurons in output layer
output_a: str Activation of output layer (str)

hidden_r / output_r: list (of str, of size I_hidden) list with each pre-layer weights and biases
regularization criteria, options are:

* ‘11’: Lasso regularization |b|

* ‘12’: Ridge regularization |b|?

* ‘elasticnet’: C(L1 — L2)

* ‘dropout’: Randomly (uniform) select N neurons in layer and turn its weight to 0
cost: str cost information for model.

* ‘function’: ‘binary-logloss’, ‘multi-logloss’, ‘mse’

e ‘reg’: {‘type’: [11’, ‘12°, ‘elasticnet’], ‘lambda’: 0.001, ‘ratio’: 0.01}
init: str initialization of weights specified from compile method

fit (x_train, y_train, x_val=None, y_val=None, epochs=10, alpha=0.1, verbosity=3, random_state=1,
callback=None, randomize=Fualse)
Train a previously specified (formed) model according to specified parameters.

Parameters

x_train: np.array / pd.Series Features data with nxm dimensions, n = observations, m =
features

y_train: np.array / pd.Series Target variable data, dimensions of: nx1 por binary classifi-
cation and nxm for multi-class

lucidmode, Release 0.4.3.13

x_val: np.array / pd.Series Same as x_train but with data considered as validation
y_val: np.array / pd.Series Same as y_train but with data considered as validation
epochs: int Epochs to iterate the model training

alpha: float Learning rate for Gradient Descent

cost_f: str Cost function, options are according to functions

verbosity: int level of verbosity to show progress 3: cost train and cost val at every epoch

callback: dict whether there is a stopping criteria or action { ‘earlyStopping’: { ‘metric’:
‘acc’, ‘threshold’: 0.80}}

Returns
history: dict with dynamic keys and iterated values of selected metrics

formation(cost=None, optimizer=None, init=None, metrics=None)
Neural Network Model Formation.

Parameters
cost: dict Details of the cost function. Includes the following elements:
 ‘cost_f": Cost function by its name, options are: { logloss’, ‘mse’}
* ‘cost_r’: Cost regularization

optimizer: dict, str type: Name of method for optimization params: parameters according
to method

init: weight initialization

metrics: metrics to monitor training
Returns

self: Modifications on instance of class

init_weights (input_shape, init_layers, random_state=1)
Weight initialization of a model that was previously instantiated by a topology formation process

Parameters
input_shape: int number of features (inputs) in the model

init_layers: list (of str, with size of n_layers) list with each layer criteria for weights initial-
ization, with options:

* ‘common-uniform’: Commonly used factor & uniformly distributed random weights [1]
* ‘xavier_uniform’: Xavier factor & uniformly distributed random weights [1]
* ‘xavier_normal’: Xavier factor & standard-normally distributed random weights [1]

* ‘he-standard’: Factor formulatated according to [2]

8 Chapter 3. Models

lucidmode, Release 0.4.3.13

References
* [1] X. Glorot and Y. Bengio, “Understanding the difficulty oftraining deep feedforward neural net-
works. International Conference on Artificial Intelligence and Statistics”, 2010.

* [2] He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Clas-
sification”, 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026-1034,
doi: 10.1109/ICCV.2015.123.

inspect (*params)
Method for model inspection, which consists in a terminal print of the model topology and values through
the use of the inspect method from the rich package for rich text and beautiful formatting in the terminal.

Parameters

params: list With the parameters to select which element to include in the console print,
all the elements included in the list will be considered in conjunction, the options are the
following:

* ‘help’: Show full help for the model

* ‘methods’: Show just callable methods

e ‘private-11’ Priavate and layer 1 methods (beginning with single underscore)
* ‘private-12’ Priavate and layer 2 methods (beginning with double underscore)

predict (X, threshold=0.5)
Computes a class or value prediction given the inherited model of the class.

Parameters
x_train: np.array Array with n-dimensional samples to generate the predictions from.
threshold: float Threshold value for the classification case. Default is 0.5

predict_proba(X)
Given the input samples, generates the class probability predictions for all the classes specified in the target
variable. Inherits the model, hyperparameters and execution conditions from the class after the fit method
is called.

3.2 Logistic Regression

class lucidmode.models.LogisticRegression(penalty='elasticnet")
Logistic Regression model under construction ...

Parameters
- ‘11’: Lasso regularization [math:|b|]
- ‘12’: Ridge regularization [math:|b|"2]
- ‘elasticnet’: [math:C(LI - L2)]

3.2. Logistic Regression 9

lucidmode, Release 0.4.3.13

10 Chapter 3. Models

CHAPTER
FOUR

FUNCTIONS

lucidmode requires

4.1 Cost functions

lucidmode. functions.cost(Y_hat, Y, type)
Cost functions

Parameters
Y_hat: np.array Predicted values
Y: np.array Ground truth or real values
type: str One of the following options:
e ‘sse’: sum of squared errors
* ‘mse’: mean of squared errors
* ‘binary-logloss’: binary cross-entropy
* ‘multi-logloss’: multi-class cross-entropy
Returns

cost: np.float32

The binary cross-entropy or logloss cost function was utilized for both of the implemented models.

m

J(w) = —% > [yi log(pi) + (1 = yi) log(1 — p;)]
=1

where:
¢ m: Number of samples.
e w: Model weights.
* y;: The i-th ground truth (observed) output.

* p;: The i-th probabilistically forecasted output.

11

lucidmode, Release 0.4.3.13

4.2 Metrics

lucidmode.tools.metrics.metrics(y, y_hat, type, use='"learning")
Statistical and performance metrics for regression and classification, for single class One-Vs-One, for multiclass
One-Vs-Rest.

Parameters
y: np.array Ground truth data
y_hat: np.array Predicted data
type: str The type of model is going to be tested. The options are: ‘classification’, ‘regression’
use: str
¢ ‘learning’: To measure performance of models in the learning process

* ‘information’: To measure information aspects for generalization goals

12 Chapter 4. Functions

CHAPTER
FIVE

VISUALIZATIONS

lucidmode provides also tools for data and model visualizations.

5.1 OHLC Class

lucidmode. tools.visualizations.ohlc_class(p_ohlic, p_theme, p_data_class, p_vlines)
OHLC Candlestick plot with color indicator of class prediction success or failure.

Parameters

p_ohlc: pd.DataFrame, dict With OHLC Price data Open, Hight, Low, Close for one particular
time period

p_theme: dict, optional Aesthetics and labels for the plot

p_data_class: array, list With the correct class, so a visual distinction will be made if prediction
is correct or incorrect

p_vlines: list, optional With timestamp values to generate vertical lines at those values.
Returns

plot_ohlc_class: plotly A plotly object to use in a .show() or iplot(), plot()

13

lucidmode, Release 0.4.3.13

14 Chapter 5. Visualizations

CHAPTER
SIX

EXAMPLES

lucidmode requires ... s.

15

lucidmode, Release 0.4.3.13

16 Chapter 6. Examples

CHAPTER
SEVEN

lucidmode requires

ROADMAP

lucidmode A Lucid Framework for Interpretable Machine Learning Models
Author: IFFranciscoME - if.francisco.me @ gmail.com
Version: v0.4.1-betal.0

License: GPL-3.0 License.

Repository: https://github.com/lucidmode/lucidmode

7.1 Understanding Versions

https://semver.org/

17

mailto:if.francisco.me@gmail.com
https://github.com/lucidmode/lucidmode
https://semver.org/

lucidmode, Release 0.4.3.13

18 Chapter 7. Roadmap

CHAPTER
EIGHT

RELEASE HISTORY

8.1 v0.4-betal.o

Calculation of several metrics for classification

sensitivity (TPR), specificity (TNR), accuracy (acc), likelihood ratio (positive), likelihood ratio (negative), confusion
matrix (binary and multiclass), confusion tensor (binary for every class in multi-class)

Sequential Class

* Move the cost_f and cost_r parameters to be specified from formation method, leave the class instantiation with
just the model architecture.

* Move the init_weights method to be specified from formation method.

Execution
¢ Create formation method in the Sequential Class, with the following parameters init, cost, metrics, optimizer.
* Store selected metrics in Train and Validation History

Visualizations

¢ Select metrics for verbose output.

8.2 v0.3-beta1.0

Regularization

e L1, L2 and ElasticNet on weights and biases, location: gradients

» L1, L2 and ElasticNet on weights and biases, location: cost function
Numerical Stability

* in functions.py, in cost, added a 1e-25 value to A, to avoid a divide by zero and invalid multiply cases in compu-
tations of np.log(A)

Data Handling

e train and validation cost
Visualization

* print: verbose of cost evolution
Documentation

* Improve README

19

lucidmode, Release 0.4.3.13

8.3 v0.2-betal1.0

Files
» complete data set: MNIST
* complete data set: ‘fashion-MNIST’
Tests passed
 fashion MNIST
* previous release tests
Topology
* single hidden layer (tested)
* 1 -2 hidden layers (tested)
* different activation functions among hidden layer
Activation functions
* For hidden -> Sigmoid, Tanh, ReLU (tested and not working)
* For output -> Softmax
Cost Functions
* ‘binary-logloss’ (Binary-class Cross-Entropy)
* ‘multi-logloss’ (Multi-class Cross-Entropy)
Metrics
¢ Confusion matrix (Multi-class)

e Accuracy (Multi-class)

8.4 v0.1-betal1.0

Tests passed
* Random XOR data classification
Sequential model
* hidden_l: Number of neurons per hidden layer (list of int, with length of 1_hidden)
* hidden_a: Activation of hidden layers (list of str, with length 1_hidden)
 output_n: Number of neurons in output layer (1)
* output_a: Activation of output layer (str)
Layer transformations
* linear
Activation functions
* For hidden -> Sigmoid, Tanh
* For output -> Sigmoid (Binary)

Weights Initialization

20 Chapter 8. Release History

lucidmode, Release 0.4.3.13

» Xavier normal, Xavier uniform, common uniform, according to [1]
Training Schemes

* Gradient Descent
Cost Functions

* Sum of Squared Error (SSE) or Residual Sum of Squares (RSS)
Metrics

* Accuracy (Binary)

8.4. v0.1-beta1.0 21

lucidmode, Release 0.4.3.13

22

Chapter 8. Release History

C

cost () (in module lucidmode.functions), 11

F

fit Q) (lucidmode.models.NeuralNet method), 7
formation() (lucidmode.models.NeuralNet method), 8

init_weights() (lucidmode.models.NeuralNet
method), 8
inspect () (lucidmode.models.NeuralNet method), 9

L

LogisticRegression (class in lucidmode.models), 9

M

metrics() (in module lucidmode.tools.metrics), 12

N

NeuralNet (class in lucidmode.models), 7

O

ohlc_class() (in module lucid-
mode.tools.visualizations), 13

P

predict() (lucidmode.models.NeuralNet method), 9
predict_proba() (lucidmode.models.NeuralNet
method), 9

INDEX

23

	Introduction
	Installation
	Using pip
	Cloning from Github

	Models
	Multi-Layer Perceptron
	Logistic Regression

	Functions
	Cost functions
	Metrics

	Visualizations
	OHLC Class

	Examples
	Roadmap
	Understanding Versions

	Release History
	v0.4-beta1.0
	v0.3-beta1.0
	v0.2-beta1.0
	v0.1-beta1.0

	Index

